Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Sci Rep ; 12(1): 22389, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2186041

ABSTRACT

Biofilm (BF) growth is believed to play a major role in the development of ventilator-associated pneumonia (VAP) in the intensive care unit. Despite concerted efforts to understand the potential implication of endotracheal tube (ETT)-BF dispersal, clinically relevant data are lacking to better characterize the impact of its mesostructure and microbiological singularity on the occurrence of VAP. We conducted a multicenter, retrospective observational study during the third wave of the COVID-19 pandemic, between March and May 2021. In total, 64 ETTs collected from 61 patients were included in the present BIOPAVIR study. Confocal microscopy acquisitions revealed two main morphological aspects of ETT-deposited BF: (1) a thin, continuous ribbon-shaped aspect, less likely monobacterial and predominantly associated with Enterobacter spp., Streptococcus pneumoniae or Viridans streptococci, and (2) a thicker, discontinuous, mushroom-shaped appearance, more likely characterized by the association of bacterial and fungal species in respiratory samples. The microbiological characterization of ETT-deposited BF found higher acquired resistance in more than 80% of analyzed BF phenotypes, compared to other colonization sites from the patient's environment. These findings reveal BF as a singular microbiological compartment, and are of added clinical value, with a view to future ETT-deposited BF-based antimicrobial stewardship in critically ill patients. Trial registration NCT04926493. Retrospectively registered 15 June 2021.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Humans , Critical Illness , Pandemics , COVID-19/epidemiology , Intubation, Intratracheal/methods , Pneumonia, Ventilator-Associated/epidemiology , Biofilms , Enterobacter
3.
Eur J Intern Med ; 102: 104-109, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944881

ABSTRACT

INTRODUCTION: This study aimed to identify markers of disease worsening in patients hospitalized for SARS-Cov2 infection. PATIENTS AND METHODS: Patients hospitalized for severe recent-onset (<1 week) SARS-Cov2 infection were prospectively included. The percentage of T-cell subsets and plasma IL-6 at admission (before any steroid therapy) were compared between patients who progressed to a critical infection and those who did not. RESULTS: Thirty-seven patients (18 men, 19 women) were included; 11 (30%) progressed to critical infection. At admission, the critical infection patients were older (P = 0.021), had higher creatinine levels (P = 0.003), and decreased percentages of circulating B cells (P = 0.04), T cells (P = 0.009), and CD4+ T cells (P = 0.004) than those with a favorable course. Among T cell subsets, there was no significant difference between the two groups except for the percentage of Th17 cells, which was two-fold higher in patients who progressed to critical infection (P = 0.028). Plasma IL-6 at admission was also higher in this group (P = 0.018). In multivariate analysis, the percentage of circulating Th17 cells at admission was the only variable associated with higher risk of progression to critical SARS-Cov2 infection (P = 0.021). CONCLUSION: This study suggests that an elevated percentage of Th17 cells in patients hospitalized for SARS-Cov2 infection is associated with an increased risk of progression to critical disease. If these data are confirmed in a larger study, this marker could be used to better target the population of patients in whom tocilizumab could decrease the risk of progression to critical COVID-19.


Subject(s)
COVID-19 , Female , Humans , Immunity , Interleukin-6 , Male , RNA, Viral , SARS-CoV-2 , T-Lymphocytes
4.
Front Med (Lausanne) ; 8: 675191, 2021.
Article in English | MEDLINE | ID: covidwho-1369670

ABSTRACT

Rationale: COVID-19 displays distinct characteristics that suggest a unique pathogenesis. The objective of this study was to compare biomarkers of coagulopathy and outcomes in COVID-19 and non-COVID-19 patients with severe pneumonia. Methods: Thirty-six non-COVID-19 and 27 COVID-19 non-immunocompromised patients with severe pneumonia were prospectively enrolled, most requiring intensive care. Clinical and biological characteristics (including plasma biomarkers of coagulopathy) were compared. Results: At similar baseline severity, COVID-19 patients required mechanical ventilation (MV) for significantly longer than non-COVID-19 patients (p = 0.0049) and more frequently developed venous thrombotic complications (p = 0.031). COVID-19 patients had significantly higher plasma concentrations of soluble VCAM1 (sVCAM1) (5,739 ± 3,293 vs. 3,700 ± 2,124 ng/ml; p = 0.009), but lower levels of D-dimers, vWF-A2, sICAM1, sTREM1, VEGF, and P-selectin, compared to non-COVID-19 patients. Principal component analysis identified two main patterns, with a clear distinction between non-COVID-19 and COVID-19 patients. Multivariable regression analysis confirmed that sVCAM1 rising levels were independently associated with a longer duration of MV. Finally, we identified close correlations between sVCAM1 and some features of COVID-19 immune dysregulation (ie. CXCL10, GM-CSF, and IL-10). Conclusion: We identified specific features of the coagulopathy signature in severe COVID-19 patients, with higher plasma sVCAM1 levels, that were independently associated with the longer duration of mechanical ventilation. Clinical Trial Registration:ClinicalTrials.gov, identifier: NCT03505281.

5.
Int J Obes (Lond) ; 45(9): 2126-2131, 2021 09.
Article in English | MEDLINE | ID: covidwho-1249201

ABSTRACT

INTRODUCTION: Obesity is commonly reported in COVID-19 patients and is associated with poorer outcomes. It is suggested that leptin could be the missing link between obesity and severe COVID-19. Our study aimed to unravel the link between adipokines, COVID-19 status, immune response, and outcomes in severe pneumonia. METHODS: In this prospective observational single-center study, 63 immunocompetent patients with severe pneumonia (36 non-COVID-19 and 27 COVID-19) were enrolled, most required intensive care. Clinical and biological characteristics (glucose metabolism, plasma adipokines, and cytokine concentrations) and outcomes were compared. RESULTS: At similar baseline severity, COVID-19 patients required mechanical ventilation for significantly longer than non-COVID-19 patients (p = 0.0049). Plasma concentrations of leptin and adiponectin were respectively positively and negatively correlated with BMI and glucose metabolism (glycemia and insulinemia), but not significantly different between the two groups. Leptin levels were negatively correlated with IL-1ß and IL-6, but the adipokines were not correlated with most other inflammatory mediators, baseline severity (SOFA score), or the duration of mechanical ventilation. CONCLUSION: Adipokine levels were correlated with BMI but not with most inflammatory mediators, severity, or outcomes in severe pneumonia, regardless of the origin. The link between obesity, dysregulated immune response, and life-threatening COVID-19 requires further investigation. CLINICAL TRIAL: ClinicalTrials.gov: NCT03505281.


Subject(s)
Adipokines/immunology , COVID-19/immunology , Obesity/complications , Adipokines/blood , Adiponectin , Aged , Cytokines , Female , Humans , Immunity , Leptin , Male , Middle Aged , Prospective Studies , Severity of Illness Index
6.
Sci Rep ; 11(1): 10824, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1242049

ABSTRACT

COVID-19 pneumonia has specific features and outcomes that suggests a unique immunopathogenesis. Severe forms of COVID-19 appear to be more frequent in obese patients, but an association with metabolic disorders is not established. Here, we focused on lipoprotein metabolism in patients hospitalized for severe pneumonia, depending on COVID-19 status. Thirty-four non-COVID-19 and 27 COVID-19 patients with severe pneumonia were enrolled. Most of them required intensive care. Plasma lipid levels, lipoprotein metabolism, and clinical and biological (including plasma cytokines) features were assessed. Despite similar initial metabolic comorbidities and respiratory severity, COVID-19 patients displayed a lower acute phase response but higher plasmatic concentrations of non-esterified fatty acids (NEFAs). NEFA profiling was characterised by higher level of polyunsaturated NEFAs (mainly linoleic and arachidonic acids) in COVID-19 patients. Multivariable analysis showed that among severe pneumonia, COVID-19-associated pneumonia was associated with higher NEFAs, lower apolipoprotein E and lower high-density lipoprotein cholesterol concentrations, independently of body mass index, sequential organ failure (SOFA) score, and C-reactive protein levels. NEFAs and PUFAs concentrations were negatively correlated with the number of ventilator-free days. Among hospitalized patients with severe pneumonia, COVID-19 is independently associated with higher NEFAs (mainly linoleic and arachidonic acids) and lower apolipoprotein E and HDL concentrations. These features might act as mediators in COVID-19 pathogenesis and emerge as new therapeutic targets. Further investigations are required to define the role of NEFAs in the pathogenesis and the dysregulated immune response associated with COVID-19.Trial registration: NCT04435223.


Subject(s)
COVID-19/pathology , Fatty Acids, Nonesterified/blood , Aged , Apolipoproteins E/blood , Arachidonic Acids/blood , COVID-19/blood , COVID-19/virology , Cholesterol, HDL/blood , Cytokines/blood , Female , Humans , Linoleic Acids/blood , Male , Middle Aged , Principal Component Analysis , SARS-CoV-2/isolation & purification , Severity of Illness Index
10.
Eur J Clin Microbiol Infect Dis ; 40(9): 2023-2028, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1122785

ABSTRACT

During an epidemic period, we compared patients hospitalized for initial suspicion of COVID-19 but for whom an alternative diagnosis was finally retained (n = 152) with those who had COVID-19 (n = 222). Most common diagnoses were another infectious disease and heart failure. COVID-19-negative patients were more often active smokers had less often cough, fever, and digestive symptoms, as compared to the 222 COVID-19-positive patients. They had higher median neutrophil and lymphocyte counts and lower CRP level. In multivariate analysis, no current smoking, neurocognitive disorder, myalgia, and fibrinogen ≥4g/L were independently associated with a final diagnosis of COVID-19.


Subject(s)
COVID-19/diagnosis , Adult , Aged , COVID-19/therapy , COVID-19/virology , Hospitalization , Humans , Male , Patients/statistics & numerical data , Retrospective Studies , SARS-CoV-2/physiology
11.
12.
Lancet Respir Med ; 9(3): 251-259, 2021 03.
Article in English | MEDLINE | ID: covidwho-989519

ABSTRACT

BACKGROUND: To date, influenza epidemics have been considered suitable for use as a model for the COVID-19 epidemic, given that they are respiratory diseases with similar modes of transmission. However, data directly comparing the two diseases are scarce. METHODS: We did a nationwide retrospective cohort study using the French national administrative database (PMSI), which includes discharge summaries for all hospital admissions in France. All patients hospitalised for COVID-19 from March 1 to April 30, 2020, and all patients hospitalised for influenza between Dec 1, 2018, and Feb 28, 2019, were included. The diagnosis of COVID-19 (International Classification of Diseases [10th edition] codes U07.10, U07.11, U07.12, U07.14, or U07.15) or influenza (J09, J10, or J11) comprised primary, related, or associated diagnosis. Comparisons of risk factors, clinical characteristics, and outcomes between patients hospitalised for COVID-19 and influenza were done, with data also stratified by age group. FINDINGS: 89 530 patients with COVID-19 and 45 819 patients with influenza were hospitalised in France during the respective study periods. The median age of patients was 68 years (IQR 52-82) for COVID-19 and 71 years (34-84) for influenza. Patients with COVID-19 were more frequently obese or overweight, and more frequently had diabetes, hypertension, and dyslipidaemia than patients with influenza, whereas those with influenza more frequently had heart failure, chronic respiratory disease, cirrhosis, and deficiency anaemia. Patients admitted to hospital with COVID-19 more frequently developed acute respiratory failure, pulmonary embolism, septic shock, or haemorrhagic stroke than patients with influenza, but less frequently developed myocardial infarction or atrial fibrillation. In-hospital mortality was higher in patients with COVID-19 than in patients with influenza (15 104 [16·9%] of 89 530 vs 2640 [5·8%] of 45 819), with a relative risk of death of 2·9 (95% CI 2·8-3·0) and an age-standardised mortality ratio of 2·82. Of the patients hospitalised, the proportion of paediatric patients (<18 years) was smaller for COVID-19 than for influenza (1227 [1·4%] vs 8942 [19·5%]), but a larger proportion of patients younger than 5 years needed intensive care support for COVID-19 than for influenza (14 [2·3%] of 613 vs 65 [0·9%] of 6973). In adolescents (11-17 years), the in-hospital mortality was ten-times higher for COVID-19 than for influenza (five [1·1% of 458 vs one [0·1%] of 804), and patients with COVID-19 were more frequently obese or overweight. INTERPRETATION: The presentation of patients with COVID-19 and seasonal influenza requiring hospitalisation differs considerably. Severe acute respiratory syndrome coronavirus 2 is likely to have a higher potential for respiratory pathogenicity, leading to more respiratory complications and to higher mortality. In children, although the rate of hospitalisation for COVID-19 appears to be lower than for influenza, in-hospital mortality is higher; however, low patient numbers limit this finding. These findings highlight the importance of appropriate preventive measures for COVID-19, as well as the need for a specific vaccine and treatment. FUNDING: French National Research Agency.


Subject(s)
COVID-19/mortality , Hospitalization/statistics & numerical data , Influenza, Human/mortality , Orthomyxoviridae , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Critical Care/statistics & numerical data , Databases, Factual , Female , France/epidemiology , Hospital Mortality , Humans , Influenza, Human/virology , Male , Middle Aged , Morbidity , Retrospective Studies , Risk Factors , Seasons
13.
J Transl Med ; 18(1): 457, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-958039

ABSTRACT

BACKGROUND: Although immune modulation is a promising therapeutic avenue in coronavirus disease 2019 (COVID-19), the most relevant targets remain to be found. COVID-19 has peculiar characteristics and outcomes, suggesting a unique immunopathogenesis. METHODS: Thirty-six immunocompetent non-COVID-19 and 27 COVID-19 patients with severe pneumonia were prospectively enrolled in a single center, most requiring intensive care. Clinical and biological characteristics (including T cell phenotype and function and plasma concentrations of 30 cytokines) and outcomes were compared. RESULTS: At similar baseline respiratory severity, COVID-19 patients required mechanical ventilation for significantly longer than non-COVID-19 patients (15 [7-22] vs. 4 (0-15) days; p = 0.0049). COVID-19 patients had lower levels of most classical inflammatory cytokines (G-CSF, CCL20, IL-1ß, IL-2, IL-6, IL-8, IL-15, TNF-α, TGF-ß), but higher plasma concentrations of CXCL10, GM-CSF and CCL5, compared to non-COVID-19 patients. COVID-19 patients displayed similar T-cell exhaustion to non-COVID-19 patients, but with a more unbalanced inflammatory/anti-inflammatory cytokine response (IL-6/IL-10 and TNF-α/IL-10 ratios). Principal component analysis identified two main patterns, with a clear distinction between non-COVID-19 and COVID-19 patients. Multivariate regression analysis confirmed that GM-CSF, CXCL10 and IL-10 levels were independently associated with the duration of mechanical ventilation. CONCLUSION: We identified a unique cytokine response, with higher plasma GM-CSF and CXCL10 in COVID-19 patients that were independently associated with the longer duration of mechanical ventilation. These cytokines could represent the dysregulated immune response in severe COVID-19, as well as promising therapeutic targets. ClinicalTrials.gov: NCT03505281.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , Immunity, Innate/physiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/therapy , Critical Care , Female , France/epidemiology , Humans , Immunophenotyping , Lymphocyte Activation/physiology , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Prognosis , Respiration, Artificial , SARS-CoV-2/physiology , Severity of Illness Index
14.
Crit Care ; 24(1): 632, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-901906

ABSTRACT

BACKGROUND: COVID-19-related ARDS has unique features when compared with ARDS from other origins, suggesting a distinctive inflammatory pathogenesis. Data regarding the host response within the lung are sparse. The objective is to compare alveolar and systemic inflammation response patterns, mitochondrial alarmin release, and outcomes according to ARDS etiology (i.e., COVID-19 vs. non-COVID-19). METHODS: Bronchoalveolar lavage fluid and plasma were obtained from 7 control, 7 non-COVID-19 ARDS, and 14 COVID-19 ARDS patients. Clinical data, plasma, and epithelial lining fluid (ELF) concentrations of 45 inflammatory mediators and cell-free mitochondrial DNA were measured and compared. RESULTS: COVID-19 ARDS patients required mechanical ventilation (MV) for significantly longer, even after adjustment for potential confounders. There was a trend toward higher concentrations of plasma CCL5, CXCL2, CXCL10, CD40 ligand, IL-10, and GM-CSF, and ELF concentrations of CXCL1, CXCL10, granzyme B, TRAIL, and EGF in the COVID-19 ARDS group compared with the non-COVID-19 ARDS group. Plasma and ELF CXCL10 concentrations were independently associated with the number of ventilator-free days, without correlation between ELF CXCL-10 and viral load. Mitochondrial DNA plasma and ELF concentrations were elevated in all ARDS patients, with no differences between the two groups. ELF concentrations of mitochondrial DNA were correlated with alveolar cell counts, as well as IL-8 and IL-1ß concentrations. CONCLUSION: CXCL10 could be one key mediator involved in the dysregulated immune response. It should be evaluated as a candidate biomarker that may predict the duration of MV in COVID-19 ARDS patients. Targeting the CXCL10-CXCR3 axis could also be considered as a new therapeutic approach. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03955887.


Subject(s)
Chemokine CXCL10/metabolism , Coronavirus Infections/complications , Pneumonia, Viral/complications , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Adult , Aged , COVID-19 , Case-Control Studies , Female , Humans , Male , Middle Aged , Pandemics , Prospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL